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The role of diffusion and transient velocities in the dispersal of passive scalars by 
chaotic advection produced in a low Reynolds number periodic journal-bearing flow 
is studied numerically and experimentally. The transient velocity field, which occurs 
whenever the cylinders switch motion, is obtained by solving the Navier-Stokes 
equations numerically in the eccentric annulus. It is observed, numerically, that the 
transient effects, along with diffusion, significantly enhance the separation of chaotically 
advected particles even when the Reynolds number is very low. Corresponding 
experimental observations are found to be in good qualitative agreement with the 
numerical results obtained by including the effect of transient velocities, which are seen 
to add to the overall separation of particles. 

1. Introduction 
It is now well established that seemingly simple low-dimensional dynamical systems, 

conservative or dissipative, can exhibit sensitive dependence on initial conditions, 
which consequently produce complicated phase trajectories. Such behaviour is often 
referred to as deterministic chaos (Schuster 1984). These current ideas of nonlinear 
dynamics have recently been applied to real fluid dynamical systems also. This process 
can be studied using the Lagrangian description of fluid mechanics, i.e. by following 
individual fluid particle trajectories. A system of partial differential equations (i.e. the 
Navier-Stokes equations) describe the evolution of a system’s velocity field, but the 
particle trajectories are governed by ordinary differential equations of the form 

A? = u(x,y ,  z ,  0, I’ = @,y, z ,  0, 5 = w ( x , y ,  2, t ) ,  (1 a-c) 

where the velocity field components u, zi, and w may or may not be known explicitly. 
Chaotic advection occurs when highly complicated particle trajectories are observed in 
the Lagrangian frame of reference even for simple well-behaved velocity fields. 

Aref (1984) made the fundamental observation that the streamfunction, $, in two- 
dimensional incompressible flows plays the role of a Hamiltonian in classical 
mechanics : 

Thus, in terms of dynamical systems, $ plays the role of a Hamiltonian, and x,y are 
canonically conjugate phase-space variables. For a time-independent $, the system of 
equations (2) constitutes a single-degree-of-freedom dynamical system in which the 
orbits lie on smooth curves in the x,y phase plane. In terms of fluid mechanics, this 
situation corresponds to a steady flow in which the fluid particles move along the 
streamlines. However, if $ is time dependent, it is possible for the system to exhibit 
chaotic particle trajectories. 
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The required time dependence of the streamfunction need not necessarily be due to 
the effects of high Reynolds number flows in which the velocities fluctuate 
stochastically, but may be caused by some simple, external modulation of the flow 
system. Idealized models demonstrating chaotic advection include a point vortex 
model of Aref (1984), tendril-whorl flow of Khakhar, Franjione & Ottino (1987), and 
a pulsed sourcesink system of Jones & Aref (1988). Amongst physically realizable 
models, the periodically driven cavity flow and the journal bearing flow are the most 
common. Chaotic mixing in periodically driven two-dimensional cavity flows has been 
studied by several authors, including Khakhar & Ottino (1985), Chien, Rising & Ottino 
(1986), Leong & Ottino (1989), and Liu & Peskin (1991). In the journal bearing system, 
which consists of two eccentric cylinders, the annular region is filled with a viscous 
liquid and the cylinders are rotated alternately to produce chaotic advection. Chaiken 
et al. (1986) studied this system experimentally as well as numerically to produce 
chaotic advection in a Stokes flow between the cylinders. Similar simultaneous 
numerical studies were reported by Aref & Balachandar (1986). A detailed comparison 
of experimental and numerical results for the case of chaotic mixing in a journal 
bearing flow is reported in Swanson & Ottino (1990). In the same geometry, studies on 
material line stretching and drop breakup have also been reported (Muzzio & 
Swanson, 1991; Muzzio et al. 1992; Tjahjadi, Stone & Ottino 1992). The effect of 
molecular diffusion in chaotic mixing was investigated by Aref & Jones (1989) who 
performed numerical experiments to show that diffusion significantly enhances the 
separation of particles in a non-integrable Stokes flow. Further investigations with 
diffusion are reported by the present authors (Dutta & Chevray 1991) and by Jones 
(1991). 

In the above studies, with or without diffusion, the numerical work was carried out 
with a Stokes flow assumption for the deterministic velocity. In other words, it was 
assumed that the flow in the eccentric annulus produced by periodic rotation of the 
cylinders is free from inertia effects and is piecewise steady. The transient and inertia 
terms from the momentum equations were omitted following the rationale that, for a 
low Reynolds number flow within Stokes regime, they are negligible in comparison to 
the viscous terms. Although in Dutta & Chevray (1991) numerical predictions (using 
a Stokes flow assumption) of separation of diffusive particles were qualitatively verified 
by experimental observations for a few cycles of stirring, comparisons for higher 
number of cycles of stirring in a flow reversibility experiment could not be successfully 
performed because of observed deviations of the numerical results from the 
experimental ones. Chaiken et al. (1986), too, report the poor reversibility of a blob of 
particles initialized in a chaotic region during a flow reversibility experiment. It is 
believed here that the deviation is because of the omission of diffusion and transient 
effects in their numerical formulation. The transient effects, which occur in a periodic 
journal bearing flow when the cylinders switch motions, last only for a few seconds. 
Although the transient time is very small compared to the cylinder rotation time in a 
cycle (which is of the order of a few minutes), the transient effects may be significant 
in a chaotic region where the particles are sensitive even to small displacements. This 
effect is studied here first by obtaining a numerical solution of the time-dependent 
Navier-Stokes equation, and then using the flow solution to study the separation of a 
blob of particles. The results are then compared with experimental observations. 
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2. Numerical studies 
2.1. Digision in a Lagrangian frame of reference 

To model the Lagrangian description of a diffusing particle, the generalized Langevin 
equation is used: 

dx 
- = V(x, t )  + S(t) ,  
d t  ( 3 )  

where x ( t )  is the position of a diffusing particle, V(x, t )  is the deterministic velocity as 
a result of the flow solution, and S( t )  is the stochastic component arising out of the 
Brownian motion of the molecules. Similar models were also used by Aref & Jones 
(1989). Herein, a distinction must be made between chaotic processes, which are low- 
dimensional dynamical systems, and stochastic processes, such as molecular diffusion, 
which are random. 

S( t )  is assumed to be a Gaussian process with zero mean and variance proportional 
to the diffusivity, D. In other words, 

If V(x, t )  in (3) is explicitly known, and S( t )  is modelled as described above, then ( 3 )  
can be integrated with time to obtain the position of the diffusing particle at any time. 
V(x, t )  can be obtained by solving the continuity equation 

v*v=o  (5)  
and the momentum equation (assuming incompressible Newtonian fluid) 

D V  
p- = -vp+ ,uv2 v, Dt 

where p is the density of the fluid and ,u is the dynamic viscosity. 

2.2. Numerical solution of the Navier-Stokes equations 
Since chaotically advected particles are very sensitive to initial conditions, transient 
and inertia effects may become significant above a certain Reynolds number, especially 
when there is flow reversal and taking particle diffusion into account. To study this 
effect, V(x, t )  is obtained by solving the full Navier-Stokes equations numerically with 
the appropriate boundary conditions. 

For an incompressible Newtonian fluid with constant properties the governing 
equations of motion in a two-dimensional Cartesian coordinate system are 

continuity: 

momentum : 

(7) 

The above equations are solved for an eccentric annular region with no-slip 
boundary conditions on the inner and outer cylinder surfaces. In order to solve the 
above governing equations numerically using a finite difference technique, it is 
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appropriate to perform a suitable coordinate transformation so that the computation 
can be done in a rectangular domain. The bipolar coordinate system has in the past 
been applied to solve conveniently engineering probelms concerning eccentric annulus 
(e.g. Cho, Chang & Park 1982). Here, we have performed the computations by 
transforming the governing equations and the boundary conditions from the Cartesian 
coordinate system (x ,  y )  to a bipolar system (5,~).  The transformation is as follows: 

where b is a positive number. 

Cartesian coordinates as 
For a two-dimensional incompressible flow, we define the streamfunction, 1c., in 

and vorticity, :, as 

Using (10) and (11) in our governing equations (7) and (8), and carrying out the 
transformation shown in (9), we get the streamfunction-vorticity formulation in 
bipolar coordinates as 

cosh c - cos 7)2 (zg a211.) -+-, -:=( b ar2 

with the transformed boundary conditions 

1c.(t0? 7, t )  = 0 
on the outer cylinder, (14a) 

cash 5, - cos 7 (to, 7 , t )  = - Q, R, at 
and 

on the inner cylinder, (14b) 
$(ti, 7, t )  = Q<t> 

at 
b 

cash ti - cos 7 
% ( f i , + - Q i R i  

where ti and to represent the inner and outer cylinders, respectively; Qi and Q, the 
angular velocities of the inner and outer cylinders, respectively; and Q(t)  the volume 
flow rate between the two cylinders. The initial conditions are @ = 0 and s = 0 
everywhere when the fluid starts from rest. When motion is being switched from one 
cylinder to the other, however, the initial conditions are given by the vorticity 
distribution at the end of the previous motion. 

In order to apply a finite difference method to solve the differential equations (12) 
and (13),  the domain is discretized as shown in figure 1. The solution of the transient 
vorticity transport equation (1 3) is obtained by using an alternate direct implicit 
method. Simultaneous solution of the streamfunction equation (12) is obtained using 
the Gauss-Siedel iterative method with successive over-relaxation to increase the speed 
of convergence. 
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FIGURE 1. Discretization by a (31 x 61) grid of the physical domain. 

2.3. Integration of particle paths 

Since our prime objective is to follow a particle in a Lagrangian frame for a flow field 
which includes the transient velocities, we must store the velocity values at every grid 
point for various time steps while the flow is developing. Once the flow attains a steady 
state in a given cycle, we store just one set of velocity values for that entire steady state. 
But when the cylinders switch motion, the flow becomes unsteady again, and we must 
store the values at various time steps until the flow becomes fully developed again. 

With a Stokes flow assumption, there are analytical solutions available for the 
geometry in question (e.g. Ballal & Rivlin 1977). As a result, in all previous studies the 
integration of the particle positions could easily be found by employing standard 
techniques such as the Kunge-Kutta method using the known value of the velocity at 
every location. On the other hand, for the numerical solution which we now have, the 
velocity values are available only at the grid point locations. In most cases, the particle 
will lie outside any grid point in a region surrounded by four grid points. The velocity 
at a particular location (x, y )  is determined using an appropriate interpolation method. 
In this study, we have chosen the bilinear interpolation which makes use of the 
dependent variable only at the four neighbouring nodes. This method is quick, and it 
is accurate if we have sufficiently dense grid points and if the nonlinear terms of the 
momentum equations are small (i.e. if the Reynolds number is not too high). 

2.4. Poincare‘ sections 
After initializing a fluid particle at any location in the eccentric annular region, its 
position can be determined at any later time by integrating the deterministic velocity 
solution, V(x,  t),  with respect to time. Defining each pair of rotations (one by the inner 
cylinder with the outer stationary, and one by the outer with the inner stationary) as 
a ‘cycle’, the particle position can be viewed and recorded at the end of each cycle (i.e. 
at t = 0, T, 2T,.  . . , nT, where T is the time period of each cycle of motion, and n is the 
total number of iterations). Such plotting of particle positions can be done by 
initializing the particles of various ‘key’ locations inside the annular region, and the 
resulting plot becomes a Poincare‘ section or surface of section. Poincare maps for the 
journal bearing flow system have been constructed by Tan (1985) and Chaiken et al. 
(1986) for a variety of cylinder eccentricities and angular displacements. These maps, 
depending on the system parameter values, reveal a rich mixture of regular and chaotic 
particle motions. A typical example is shown in figure 2 in which the chaotic regions 



6 P. Dutta and R. Chevray 

FIGURE 2. Poincart surfaces-of-section produced with a Stokes flow assumption of the velocity field 
with inner cylinder radius R, = 0.25, outer cylinder radius R, = 1.0. (Dimensions normalized with 
respect to outer cylinder radius.) Eccentricity is 0.375R2,, and each cycle comprises 0.875 revolutions 
of the inner cylinder (counterclockwise) followed by 0.3 revolutions of the outer cylinder 
(counterclockwise). 

correspond to the ones filled with dots randomly distributed, while the regular regions 
are marked by closed curves. 

2.5. Numerical experiments 
The objective of the present research is to study the effects of diffusion and transient 
velocities on the overall mixing of the particles in a chaotically advected flow. 
Transients velocities prevail when the cylinders switch motions. The numerical 
investigation is carried out by locating circular blobs of particles in a chosen chaotic 
region of a given phase space. Each blob is represented by about 2000 evenly 
distributed points inside a small circle. With a given value of the diffusivity, D,  the two- 
cylinder system is stirred numerically using ( 3 )  by completing a few cycles of motion 
followed by the same number of reverse cycles. If the particle motions are deterministic 
(i.e. if D = 0 and transient effects are neglected), the particles return to their initial 
locations after flow reversal. (This would be true if we were to stir the system only for 
a finite number of cycles, thus preventing the numerical errors building up.) But with 
a finite D and/or if the transient effects are taken into account, the particles are no 
longer expected to return to their initial locations after flow reversal, even for a few 
cycles of stirring. At the end of the flow reversal, the mean-square separation, cr', of 
the particles from their initial locations is evaluated by the following equation: 

l N  

Nn=, 
(15) cr2 = - c (Xi - x,>;, 

where the subscripts i andfrefer to the initial and final positions, respectively, and N 
is the total number of particles. Individual effects of diffusion, transients, and their 
combined effect on the separation of particles are studied for a variety of blob 
initializations and stirring time. 

3. Experimental arrangement 
The apparatus constructed is shown schematically in figure 3. Both cylinders are 

made of Plexiglas, with the outer one being hollow, while the inner one is solid. The 
axes of both cylinders are vertical. The physical dimensions are shown in figure 3 .  The 
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FIGURE 3. Schematic diagram of the experimental arrangement. 

cylinders are made long enough so that the effect of the bottom surface can be 
neglected as long as the tracers are introduced close to the upper surface. In order to 
adjust the eccentricity of the cylinders, the inner cylinder is attached to a horizontal 
strut which can move in a horizontal slot. 

The working fluid is chosen to be glycerin because it is clear, is miscible with water, 
has a Newtonian behaviour, and has sufficiently high viscosity so that the Reynolds 
number remains very low (within Stokes regime, if the rotational speeds are low 
enough). The Reynolds number, Re, is defined as 

where R, and Ro are the radii of the inner and outer cylinders respectively, and SZ is the 
angular velocity. Dye solution is prepared by dissolving a small amount of fluorescent 
powder in glycerin. The dye is thus made neutrally buoyant in the fluid so as to prevent 
any three-dimensional effect. 

The flow between the two cylinders is modulated by rotating the cylinders in the 
desired fashion by means of two stepper motors, one connected to each cylinder. The 
precise control of the rotation rate, direction, and the angular displacement of each 
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motor per cycle is achieved with the help of a personal computer. The heart of the 
experimental set-up is a driver system (consisting of two stepper motors with drivers 
and controller boards) which controls the rotations of the two cylinders precisely. The 
motor driver can deliver between 50 and 500 steps per second to the motor and each 
step rotates the motor by 1.8". Speed reduction is achieved by means of a gear train 
such that the rotational speed of each cylinder can be as low as 0.1 r.p.m. 

The procedure followed in the experiments is similar to the one used in the numerical 
experiments. First, a set of flow parameters is chosen which can produce the desired 
Poincark section. From the corresponding Poincark map, the regions of chaotic and 
regular behaviour can be identified. For comparison, the flow parameters chosen for 
experiments are made to match those used for numerical studies. Using a 25-gauge 
hypodermic needle, a circular blob of dye is introduced just below the fluid surface. 

The dye is illuminated by ultraviolet light and it is photographed by a camera fixed 
just above the apparatus. Ultraviolet light is used because it makes only the fluorescent 
dye glow. Further, in order to prevent any reflection from the cylinders, the inner 
cylinder and the bottom of the outer cylinder are painted black. The two-cylinder 
system is then stirred for a few cycles of motion and another photograph is taken at 
the end of the forward cycles. An equal number of reverse cycles are then performed 
and, at the end of the reverse cycles, a final photograph of the blob is taken. 

4. Results and discussion 
4.1. Testing the accuracy of the numerical solution 

Before examining the irreversibility caused by transient effects, the numerical accuracy 
of the flow solution and the associated interpolation method for integration of particle 
paths must be verified. First, we obtain a numerical solution of the velocity field using 
a cylinder rotation speed of 0.1 r.p.m., which corresponds to a Reynolds number 
within the Stokes regime. Next, we construct a Poincark section using piecewise steady 
numerical solutions of the velocity field (figure 4). It is found to be in excellent 
agreement with corresponding ones obtained using analytical solution of the Stokes 
flow (figure 2). This demonstrates that the numerical solution and the associated 
interpolation technique is able to capture the same details of the Poincark mapping as 
produced by the analytical solutions, and is therefore suitable for the study of chaotic 
advection. 

Next, we estimate the order of magnitude of the numerical error accumulated while 
numerically integrating the particle positions with time. This is done by performing the 
following numerical experiments regarding separation of a blob of particles. Using 
piecewise steady velocity fields, and setting D = 0 in equation (3), the system is stirred 
for a few cycles of motion followed by an equal number of reverse cycles. The flow 
parameters chosen correspond to those of figure 2, and the blob initialization is shown 
in figure 5(a). At the end of the flow reversal, the mean square separation, v', of the 
particles from their initial locations is evaluated according to equation (1 5). Ideally, in 
the absence of any numerical error, the particles would come back to their initial 
locations at the end of the reverse cycles, and d would be zero. For the grid system 
chosen, the flow reversal experiment with ten cycles gave a maximum g' of the order of 
loplo m2. Since the diameter of the outer cylinder is about 0.2 m, this indicates a 
reasonable degree of accuracy of our numerical solutions. This method was used to 
validate the choice of grid sizes for the numerical solution of the Navier-Stokes 
equations. For a higher number of cycles of stirring, one may need more numerical 
accuracy for the calculation of the velocity field, which would then necessitate the 
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FIGURE 4. Poincare section obtained by using piecewise steady flow solution (i.e. without transient 
effects) using the numerical solution of Navier-Stokes flow with Reynolds number within the Stokes 
regime. The flow parameters are as in figure 2. 

choice of a finer mesh. But for about ten cycles, the present choice of 31 x 61 grids has 
proved to be accurate enough. 

4.2. Separation of particles by transient effects 

Next, numerical studies similar to the above were performed, but this time using the 
transition solution of the velocity field instead of the piecewise steady one. Figure 5 
shows the case in which the particles are advected with a cylinder rotational speed of 
0.1 r.p.m. The particles in this case, which are advected for 7 and 10 forward cycles, 
followed by the same number of reverse cycles, do not return to their initial positions. 
Since the value of D is chosen to be zero (i.e. no diffusion effects), and it was checked 
earlier that the irreversibility caused by numerical errors was negligible, the principal 
cause of irreversibility should, therefore, be the transient effects. 

In order to enhance the transient effects further, the above numerical experiments 
were repeated with a cylinder rotational speed of 1.0 r.p.m. which gave a higher 
Reynolds number, equal to 0.45, above the Stokes flow limit. The corresponding 
results, shown in figure 6, mark a significant increase of irreversibility after the reverse 
cycles, which is expected since the inertia is higher and the transients last longer. This 
time, however, the particle distribution is different from that of the piecewise steady 
case even after the forward cycles. 

4.3. Separation due to molecular diffusion 
The separation caused by random perturbations such as molecular diffusion is also 
studied. Suppressing any transient effects (i.e. using the piecewise steady flow solution), 
and choosing a finite D equal to 5 x 10-l' m2 s-l, the above numerical experiments were 
repeated and the separation after flow reversal is evaluated (figure 7). The separation 
in this case is due only to diffusion effects, since the transient velocities are not taken 
into account. These calculations are performed in order to compare the magnitude of 
the two effects separately; the combined effects of diffusion and transient velocities are 
presented next. 

4.4. Combined effects of transients and dijiusion 
Simultaneous consideration of diffusion and transients would simulate a real 
(experimental) phenomenon more accurately since, in real experiments, both processes 
take place together. For comparison, the flow parameters in both the numerical work 
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FIGURE 5 .  Numerical experiments for estimating the separation due to transient effects while stirring 
in a chaotic region. The flow parameters correspond those of figure 2, and D = 0. A transient velocity 
field with a cylinder speed of 0.1 r.p.m. is used. (a) Initial distribution of particles, (b) after 7 forward 
cycles, (c) after flow reversal, ( d )  after 10 forward cycles, and (e)  after flow reversal. 

and the experiments are chosen to be identical. The diffusivity, D,  in the numerical 
work is taken to be 5 x  10-12m2s-1, which is about the measured value of the 
diffusivity of the dye in glycerin. The rotational speed of the cylinders in the 
experiments is chosen to be 0.1 r.p.m., which corresponds to a Reynolds number of 
0.045. This keeps the Reynolds number within the Stokes regime. Also, the blob is 
introduced at a location corresponding to that used in the numerical experiments. 

Numerical results and corresponding experimental observations are shown in figures 
8 and 9 for 7 and 10 cycles of stirring, respectively. The agreement is remarkable even 
for 10 cycles of stirring. Such an agreement could not have been obtained earlier with 
a Stokes solution of the velocity field. This result, however, does not put the Stokes 
flow assumption under question altogether, because it is still effective in predicting the 
particle distribution during the forward cycles if the Reynolds number in the 
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FIGURE 6. As figure 5 but with a cylinder speed of 1 r.p.m. is used. The initial distribution of particles 
is as in figure 5(a). (a) After 7 forward cycles, (b) after flow reversal, (c) after 10 forward cycles, and 
( d )  after flow reversal. 

FIGURE 7. Separation due to diffusion effects (no transient effects taken into account) while stirring 
in a chaotic region. The flow parameters correspond those of figure 2,  and D = 5 x 10-l2. The initial 
distribution of particles is as in figure 5(a). (a) After 7 forward cycles, (b)  after flow reversal, (c) after 
10 forward cycles, and ( d )  after flow reversal. 
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FIGURE 8. Numerical and experimental results for stirring for 7 cycles; (a) initial location of blob, (b) 
after 7 forward cycles, and (c) after flow reversal. In the numerical study, D is taken to be 5 x lo-’’. 

experiments is sufficiently low. But, when we begin the reverse cycles, the initial 
conditions of the particles in the transient case are different from the corresponding 
ones produced with Stokes solution because of the ‘errors’ accumulated due to inertial 
effects during the forward cycles. These ‘errors’ are amplified during the course of the 
reverse cycles because of the sensitivity to initial conditions in a chaotic region. Figure 
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FIGURE 9. As figure 8 but for 10 cycles; (a) initial location of blob, (b) after 10 forward cycles, 
and (c) after flow reversal. In the numerical study, D is taken to be 5 x 10-l2. 

8, which shows the case for 7 cycles, shows that the particles branch out at a particular 
location in the flow reversal picture. For the case of 10 cycles, the particles diverge in 
the same region (figure 9). Hence, we may expect a hyperbolic point in this 
neighbourhood. 

Figure 10 shows the separate and combined effects of diffusion and transients on the 
separation of particles. It may be noticed that, for a few cycles of stirring (up to 5) ,  the 
combined effect of diffusion and transients is more than the sum of the individual 
effects. For longer duration of stirring, however, the combined effect becomes less than 
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FIGURE 10. Mean-square separation with various cycles of stirring showing separate effects of 
diffusion and transient velocities and also their combined effects. 

the sum of the individual effects, and the transient effects alone produces the bulk of 
the separation. Using the physical dimensions of the system, and considering that the 
duration of transient velocities is about 1 s in a single cycle, the displacement of a 
particle due to transient velocities for a cylinder rotation speed of 0.1 r.p.m. is about 
lop4 m. Similarly, taking D to be about lo-'' m2 s-l and the duration of a cycle to be 
about lo's, the characteristic displacement due to diffusion effects is estimated to be 
about m. Thus, for a flow within the Stokes regime, the diffusion effects and the 
transient velocity effects are comparable in producing perturbations to the particle 
trajectories, so neither can be neglected while estimating the separation of particles 
produced in a chaotic advection. Moreover, the two processes can be thought to be 
acting at different times during the cycle. When transient effects are dominant (during 
starting, stopping, and switching of cylinder motions), diffusion has a negligible effect 
because the duration is too short. During the rest of the cycle, the motion is steady, 
thus making the transient velocities zero while allowing the diffusion process to take 
place over a longer time-span. This is perhaps the reason why the additive effect occurs 
for a few cycles of stirring. For a longer duration of stirring, however, the other 
nonlinear effects of stretching and folding occur, which are not taken into account in 
our above scale analysis. Hence, for a larger number of cycles of stirring, these effects 
should also be taken into account. 

Since it is now evident that both molecular diffusion and inertia effects make 
contributions to the overall separation of particles, it may be appropriate to study their 
relative effects using the Peclet number, Pe = V L / D ,  where V = QR, is a characteristic 
velocity, L = (R,-RJ is a characteristic length of the system, and D is the molecular 
diffusivity. The Peclet number is varied by using different values of the diffusion 
coefficient, D, of 10-lo, and 10-l' m2 s-'. Figure 11 (a)  shows the variation of 
mean-square separation with the duration of stirring for various Peclet numbers for the 
case of chaotic advection with molecular diffusion and no inertial effects. For high and 



Inertial efects in chaotic mixing with difision 15 

lo-’ 

10-4 

o2 1 0 - ~  

10-6 

10-7 
2 4 6 8 10 12 

Number of cycles 

10-6 
2 4 6 8 10 12 

Number of cycles 

FIGURE 11. Variation of mean-square separation with the duration of stirring for various PCclet 
number for the case of chaotic advection with molecular diffusion and (a) no inertial effects, and (b)  
with inertial effects included. 

medium PCclet numbers, the behaviour is similar, i.e. the separation increases almost 
exponentially with stirring time. For low PCclet numbers, however, the increase in 
separation slows down with longer duration of stirring. This phenomenon may be 
explained by considering the fact that there may be multiple folds of the blob when 
stirring takes place for a longer duration, and, if the diffusivity is sufficiently high, there 
is a distinct possibility that particles from one arm of the fold diffuse into an adjacent 
arm. When transient effects are included (figure 11 b), the separation of particles at the 
larger number of cycles of stirring become less dependent on the PCclet number, 
indicating that the inertial effects dominate when the stirring is over a long period. 

5. Conclusions 
The above results show that inertial effects, in spite of their low orders of magnitude 

and very short duration, can play a significant role in enhancing mixing in a 
periodically driven flow in an eccentric annulus. This phenomenon is expected to be 
valid for similar flows in other geometries also. Moreover, since the particles 
undergoing separation in this study represent passive scalars, the concept can be used 
for enhancement of heat transfer as well, particularly for the case of high Prandtl 
number fluids. 
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From this study, we find that a flow solution obtained by solving the Navier-Stokes 
equations numerically can also be used for studying chaotic advection in an eccentric 
annulus. Figure 4 shows that all the structural details in a PoincarC section predicted 
by using an analytical solution of the velocity field can be captured very effectively by 
using a numerical solution of the velocity field produced by a modest mesh size with 
31 x 61 grids. This points toward the possibility of studying chaotic advection 
including several realistic features such as inertia, vibration and body forces ; non- 
Newtonian fluids could be studied in this manner as well. 

The support of the work by the National Science Foundation under Grant No. CTS- 
89- 185 1 1 is gratefully acknowledged. 
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